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Abstract. A 3~ aperiodic structure model with cubic point symmetry is established by 
projection from a lattice in 6D space. Its Fourier transform describes well the diffraction 
patterns of the aperiodic phase in rapidly solidified V-Ni-Si and other transition-metal- 
silicon alloys. This aperiodic phase is suggested to be a quasi-crystal with cubic point group 
symmetry. 

Since the discovery of the icosahedral quasi-crystal in A1-Mn alloys (Shechtman er a1 
1984), quasi-crystals (QCS) with various 2D non-crystallographic point symmetries have 
been reported, such as the decagonal (Bendersky 1985, Fung et a1 1986), dodecagonal 
(Ishimasa er a1 1985, Chen er a1 1988) and octagonal (Wang et a1 1987) phases. These can 
be described with aperiodic tilings projected from a higher-dimensional cubic lattice. 
Principally, a QC is not necessarily to be associated with non-crystallographic point group 
symmetry (Janssen 1988), and it is natural to assume that QCS and corresponding tilings 
can exist with a crystallographic point symmetry, such as twofold, threefold, fourfold 
and sixfold rotational symmetry. In fact, electron diffraction patterns (EDPS) consisting 
of aperiodic Bragg peaks and cubic point symmetry have already been found in rapid 
solidified V6NiI6Si7 and other transition-metal-silicon alloys (Feng et a1 1987, 1989, Lu 
and Feng 1990). A striking feature of these EDPS is that they have no apparent ‘main 
reflection lattice’. This is essentially different from the conventional incommensurately 
modulated structures, whose strong diffraction peaks form a periodic lattice surrounded 
by weak satellite peaks. The absence of the main reflection lattice implies that this 
aperiodic phase in V-Ni-Si and other related alloys is closer to a QC in diffraction 
phenomena and may be taken as experimental evidence of the existence of a cubic 
quasi-crystal (CQC). On the other hand, Kulkarni (1989) generated a ZD quasi-periodic 
structure with 4 mm point group symmetry. In this paper we construct a model of a 
QC on the basis of the experimental data in the above transition-metal-silicon alloys, by 
the cut-and-projection method (Elser 1986). The Fourier transform of this CQC model 
agrees well with the experimental EDPs. 
11 On leave from Research School of Chemistry, Australia National University, GPO Box 4, Canberra, 
Australian Capital Territory 2600, Australia. 
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Figure 1. Two sets of basis vectors in 3~ physical 
space used to construct the model. 

1 

- 
-1 -1 -1 

--J 
- s  0 s 

L o  --s s 

This is just equivalent to operate 2(,,,,,) on ( l ) ,  resulting in a rotation of n about [OOl]. 
Since this 6~ matrix representation is 3 + 3 reducible, there exist two 3D orthogonal 
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subspaces: Ei and E:. A basis for the representation in the space E6, written in the 
components in these two subspaces, is 

whereAl, for example, has the form +(1,1, -1, - c ,  -c ,  c). The short form in equation 
(2) makes the relationship between the basis vectors in the two 3~ subspaces and those 
in the 6D space clearer. The constant c is the scaling factor in the perpendicular subspace. 
This basis can be taken as that of a periodic lattice in the 6~ space. From the reciprocal 
relationship, A i  X AT = S o ,  the reciprocal basis in E6 is 

1 
l + c  

-- - 
A4 

(3) 

The components of the reciprocal basis vectors A,* in the space E], i.e. a; , are (110)/ 
(1 + c) and ( l l l )c /s( l  + c).  These are two sets of non-equivalent vectors which define 
two sets of diffraction peaks. As in the cut-and-projection model for an icosahedral QC, 
the parameter l/s defines the difference in magnitudes of the perpendicular components 
of the two sets of the reciprocal vectors and thus determines the relative intensities of 
the two sets of reflections, while the ratio c/s defines the relative positions of them. With 
proper choice of these parameters, an EDP can be indexed with basis (3). Note that ai x 
a,? f 6 ,  and ai does not correspond to a set of equally spaced planes and, therefore, 
corresponds to neither a basis lattice nor a modulated wave. 

One notices that the parallel components of the reciprocal basis (3) are just those of 
BCC and FCC structures. It is then equivalent to rewrite these parallel components in 
terms of the cubic axes, with BCC and FCC extinction conditions, i.e. 
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(4) 

With this baiis, each diffraction spot can be indexed by six integers ( I ,  J, K ,  L ,  M ,  
N )  with the constraints L + M = even, M + N = even, N + L = even and I + J + K = 
even. Basis (4) is more convenient to use in indexing observed diffraction patterns but 
is less clear in relation to the structure in the hyperspace than is basis (3). 
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Figure2. Experimental EDPS from rapidly solidified V-Ni-Si alloy taken along (a )  (1 IO), ( b )  
(111)  and (c) (001). The corresponding simulated patterns are shown in ( d ) ,  ( e )  and (f) for 
comparison. 
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Table 1. Indices and amplitudes of some diffraction spots in figure 2(a). 

Spot I J K L M N Spot I J K L M N 

0 0 0 0 0 0 0 0.999 26 4 0 0 4 0 0 0.336 
1 0 0 0 1 1 1 -0.057 27 4 0 0 3 1 1 0.055 
2 0 1 1 0 0 0 0.115 28 4 1 1 3 1 1 0.888 
3 0 1 1 1 1 1 0.037 29 4 2 2 3 1 1 0.647 
4 0 1 1 0 2 2 0.001 30 4 2 2 4 2 2 0.152 
5 0 2 2 0 0 0 -0.001 31 4 3 3 4 2 2 0.294 
6 0 2 2 1 1 1 0.187 32 4 3 3 3 3 3 0.282 
7 0 2 2 0 2 2 0.609 33 4 4 4 3 3 3 0.997 
8 0 3 3 0 2 2 0.913 34 6 0 0 4 0 0 0.831 
9 0 4 4 0 2 2 0.079 35 6 1 1 4 0 0 0.240 

10 0 4 4 1 3 3 0.362 36 6 1 1 5 1 1 0.674 
11 0 4 4 0 4 4 0.032 37 6 2 2 5 1 1 0.475 
12 0 5 5 0 4 4 0.863 38 6 2 2 4 2 2 0.491 
13 0 6 6 0 4 4 0.684 39 6 3 3 4 2 2 0.755 
14 2 0 0 0 0 0 0.003 40 6 3 3 5 3 3 0.181 
15 2 0 0 2 0 0 0.788 41 6 4 4 5 3 3 0.763 
16 2 1 1 0 0 0 -0.078 42 8 0 0 6 0 0 0.996 
17 2 1 1 2 0 0 0.220 43 8 1 1 6 0 0 0.317 
18 2 1 1 1 1 1 0.715 44 8 1 1 7 1 1 0.259 
19 2 2 2 1 1 1 0.508 45 8 2 2 7 1 1 0.151 
20 2 2 2 2 2 2 0.460 46 8 2 2 6 2 2 0.607 
21 2 3 3 2 2 2 0.715 47 8 3 3 6 2 2 0.910 
22 2 3 3 1 3 3 0.200 
23 2 4 4 1 3 3 0.809 
24 2 5 5 2 4 4 0.673 
25 4 0 0 2 0 0 0.390 

The Fourier transform of the lattice described by (1) is, according to Elser (1986), 

where ql is the component of the reciprocal vector in E: and Vj is the volume of the 
projection window, which is taken as a sphere in 3~ space E: to the first approximation. 

Equations (4) and ( 5 )  have been used to calculate the diffraction amplitude of the 
CQC lattices and to match the experimental diffraction. Various patterns with the CQC 
characteristic in different alloy systems as in the work of Feng eta1 (1987) can be matched 
with appropriate choice of parameters c and s. Take rapidly solidified V6NiI6Si7 alloy as 
an example, it is found that, with c/s = 0.6 and c = 0.44, the simulated patterns are in 
good agreement with the experimental patterns. This is shown in figure 2; figures 
2(a ) ,  2(b) and 2(c) are the experimental patterns of (110), (111) and (001) zone axes, 
respectively, and figures 2(d), 2(e) and 2( f )  are the corresponding simulated patterns. 
For a clear comparison, some important spots in figure 2(a) are marked with numbers, 
and their indices and amplitudes calculated from equation ( 5 )  are listed in table 1. The 
weak reflections arrowed in figure 2(b) lie somewhat above or below the {111}* reciprocal 
plane, such as spots 18 and 29 in figure 2(d). 

Extinctions occur owing to the symmetry operations in hyperspace (Feng et a1 1989). 
On comparison of figures 2(c) and 2( f), it can be found that the spots on the lines in the 
calculated pattern (figure 2( f )) disappear in the experimental diffraction pattern (figure 
2(c)). The extinction condition is as follows: L = 0, M + N = 4n + 2; M = 0, N + L = 
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Figure3. Simulated( I IO)p;ittcrnwithc/.~ = 1. The patterniscommensurate. Note that spots 
4 a n d  5 in l i p r c  2 arc mcrgcd into onc. which i s  arrowcd. 

4t7 + 2; or N = 0, L + M = 4n + 2, with 17 an integer. The extinction rule is very similar 
to that of the diamond' glide planc in a conventional crystal. Note also that some spots 
in figures 2(a), 2(d) and 2 ( , f ) ,  such as spots 15.25 and 42, disappear in figure 2(c). It has 
been shown that these spots are actually extinct because of some symmetry operations 
(Fcng et a1 1989) and their appearance in the experiment (e.g. figure 2(a))  is due to a 
multiple-diffraction effect (Lu 1989). 

The positions and intensities of the diffraction peaks change sensitively with the 
parameters c and s, while the cubic point group symmetry still remains. As mentioned 
before, there are two sets of reciprocal basis vectors. For c/s = 0, one of them vanishes, 
leading to a BCC lattice, which corresponds to the y-brass-like phase (Feng et a1 1989). 
When CIS = $, both sets of bases are active, forming a complicated FCC lattice, as shown 
in figure 3(h) .  The corresponding experimental diffraction pattern (figure 3(a))  is found 
in V-Ni-Si (Feng et a1 1987). This change in CIS causes many diffraction spots to shift, 
such as spots 4 and 5 in figures 2(a) and 2(d) move in opposite directions and become 
one when c/s = 4 as in figure 3. When 0 < c/s < 4, a series of cocs can be formed; each 
has the same point groupsymmetry but different EDPS, characterized by the relative shift 
of diffraction spots (Feng et a1 1987, 1989). For a oc, the spot shift always corresponds 
to a defect in symmetry, because it has the smallest rank of the point symmetry while, 
in the coc. the rank of the lattice is 6 and :he smallest rank for a lattice of cubic point 
group is 3, so that the diffraction spots can shift without causing a defect in symmetry. 
If  an icosahedral oc with a rank of 12 is found, it is possible that various diffraction 
patterns resulting from spot shift with fivefold symmetry should exist. 

The above analysis shows that the projected tiling gives Fourier transforms which 
agree well with the experimental EDPS of the aperiodic phase in rapidly solidified V-Ni- 
Si and related alloys. This leads us to propose that this phase is a oc with a cubic point 
group symmetry. 
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